Definitions:
Table 1. Geometrical Properties of IPMS
Spacegroup | Ia3d, Q230 | Pn3m, Q224 | Im3m, Q229 |
IPMS type | G, gyroid | D, diamond | P, primitive |
gerrymander’s walk | devil’s delight | plumber’s nightmare | |
Γ | 0.767 | 0.750 | 0.717 |
χ | -8 | -2 | -4 |
A* | 3.091 | 1.919 | 2.345 |
Spacing Ratio for X-ray Reflections (International Tables for Crystallography):
Ia3d: √ 6:√ 8:√ 14:√ 16:√ 20:√ 22:√ 24:√ 26
Pn3m: √ 2:√ 3:√ 4:√ 6:√ 8:√ 9:√ 10:√ 11:√ 12:√ 14:√ 16:√ 17
Im3m: √ 2:√ 4:√ 6:√ 8:√ 10:√ 12:√ 14:√ 16:√ 18:√ 20:√ 22:√ 24:√ 26
IPMS approximations (Rummel et al., 1998).
Ia3d: | Sin(x) Cos(y) + Sin(y) Cos(z) + Sin(z) Cos(x) = 0, where –π < x < 3 π, -π< y <3 π, -π< z < π | (1) |
Pn3m: | Sin(x) Sin(y) Sin(z) + Sin(x) Cos(y) Cos(z) + Cos(x) Sin(y)Sin(z) + Cos(x) Cos(y) Sin(z) = 0, where 0 < x <2.5 π, 0 < y < 2.5 π, -0.5 π < z < 1.5 π |
(2) |
Im3m: | Cos(x) + Cos(y) + Cos(z) = 0, where –π< x < 3 π, -π < y < 3 π, -π < z < π | (3) |
Volume fraction of lipids (Qiu and Caffrey, 1998): | |
(4) | |
This equation can be used to numerically calculate the lipid length l. |
|
Surface area at distance ξ from IPMS (Anderson et al., 1988): | |
(5) | |
Radius of water channels (from Eq.5): | |
(6) | |
Lipid shape factor (Qiu and Caffrey, 2000): | |
(7) |
REFERENCES:
CONTACT US: USC | Cherezov Lab | cherezov@usc.edu