• home
  • research
  • LCP resources
  • publications
  • members
  • links
  • contact


  • INTRO
  • LCP Equations
  • LCP Lipids
  • LCP Protocols
    • Lipid Mixing
    • Reconstitution in LCP
    • Manual Crystallization
    • Harvesting
  • LCP Tools
    • Syringe Lipid Mixer
    • Repeating Syringe Dispenser
    • Glass Sandwich Plate
    • Crystallization Robot
    • Automatic Incubator/ Imager
    • LCP-FRAP Station
    • SONICC
  • Crystal Gallery
  • Structures from LCP
  • LCP Publications
    • Lipids LCP
    • Mechanism LCP
    • Reviews LCP
    • Structures LCP
    • Technology LCP
  • LCP Links

LCP Equations

Definitions:

  • χ is the Euler-Poincare characteristic
  • A* is the area of the surface in the unit cell with the lattice parameter equals to unity
  • Γis the topology index,
  • γ is the lipid shape factor
  • Vis the volume per lipid molecule
  • A(ξ)is the area at distance ξ from IPMS
  • lis the lipid length
  • ais the LCP lattice parameter
  • Φis the volume fraction of lipids in LCP
  • rwis the water channel radius

Table 1. Geometrical Properties of IPMS

Spacegroup Ia3d, Q230 Pn3m, Q224 Im3m, Q229
IPMS type G, gyroid D, diamond P, primitive
gerrymander’s walk devil’s delight plumber’s nightmare
Γ 0.767 0.750 0.717
χ -8 -2 -4
A* 3.091 1.919 2.345

Spacing Ratio for X-ray Reflections (International Tables for Crystallography):

Ia3d: √ 6:√ 8:√ 14:√ 16:√ 20:√ 22:√ 24:√ 26

Pn3m: √ 2:√ 3:√ 4:√ 6:√ 8:√ 9:√ 10:√ 11:√ 12:√ 14:√ 16:√ 17

Im3m: √ 2:√ 4:√ 6:√ 8:√ 10:√ 12:√ 14:√ 16:√ 18:√ 20:√ 22:√ 24:√ 26

IPMS approximations (Rummel et al., 1998).

Ia3d: Sin(x) Cos(y) + Sin(y) Cos(z) + Sin(z) Cos(x) = 0, where –π < x < 3 π, -π< y <3 π, -π< z < π (1)
Pn3m: Sin(x) Sin(y) Sin(z) + Sin(x) Cos(y) Cos(z) + Cos(x) Sin(y)Sin(z) + Cos(x) Cos(y) Sin(z) = 0,
where 0 < x <2.5 π, 0 < y < 2.5 π, -0.5 π < z < 1.5 π
(2)
Im3m: Cos(x) + Cos(y) + Cos(z) = 0, where –π< x < 3 π, -π < y < 3 π, -π < z < π (3)
Volume fraction of lipids (Qiu and Caffrey, 1998):
(4)

This equation can be used to numerically calculate the lipid length l.

Surface area at distance ξ from IPMS (Anderson et al., 1988):
(5)
Radius of water channels (from Eq.5):
(6)
Lipid shape factor (Qiu and Caffrey, 2000):
(7)

REFERENCES:

Anderson, D.M., Gruner, S.M., and S. Leibler (1988) Geometrical aspects of the frustration in the cubic phases of lyotropic liquid crystals. Proc. Natl. Acad. Sci. USA 85: 5364-5368.

Qiu, H, and M. Caffrey (1998) Lyotropic and thermotropic phase behavior of hydrated monoacylglycerols: structure characterization of monovaccenin. J. Phys. Chem. B 102: 4819-4829.

Qiu, H., and M. Caffrey (2000) The phase diagram of monoolein/water system: metastability and equilibrium aspects. Biomaterials 21: 223-234.

Rummel, G., Hardmeyer, A., Widmer, C., Chiu, M.L., Nollert, P., Locher, K.P., Pedruzzi, I., Landau, E.M., and J.P. Rosenbusch. (1998) Lipidic cubic phases: new matrices for the three-dimensional crystallization of membrane proteins. J. Struct. Biol. 121: 82-91.

CONTACT US: USC | Cherezov Lab | cherezov@usc.edu